tin = 67;7; and
& fnfm(i)ht:o
_ ‘Smn for TE modes 8
b = elolg, m(®)|e=e, for TM modes (8)

where &, is the (n-m)th coefficient of the Fourier series expansion
of the inverse of permittivity, 3,,, the Dirac delta function and &
= n® where n is the refractive index of the ith layer. Moreover,
L, is a matrix with elements

0 7}‘/'(0‘571) Smn TE polarisation
lmn = " (s) ¢ () . . (9)
Jkan mn Sy TM polarisation
and L, is a matrix with elements
17(7?21 = ﬁjk:gly?(smﬂ (10)

The index m comes from the boundary conditions applications; it
also denotes the harmonic order and for each n, m also ranges
from -eo to +eo,

Using Maxwell’s equations in the PBG region we obtain a dif-
ferential equation system to be solved using the boundary condi-
tions of eqns. 6 and 7 and assuming k. is an unknown parameter.
The numerical integration of the system has been carried out by a
fifth-order Runge-Kutta-Fehlberg algorithm and the search for
the complex eigenvalue k., has been performed using a polynomial
form of Muller’s routine. Having found k., the other propagation
constants, field amplitudes and phases and then, the power flow
and reflection and transmission coefficients can be calculated.

For this purpose we have developed [2] a general model of
transmittivity and reflectivity, accounting for any arbitrary
number of field harmonics, where the field continuity conditions
at interfaces (i.e. at z = 0 and z = L) enable p and 1 to be deter-
mined, which are the field transmission and reflection coefficients,
respectively. Thus the modal reflection coefficient Rp = |p]* and
the modal transmission coefficient 7 = |t can be obtained.

The cover (substrate) radiation efficiency is simply given by the
power density radiated in the cover (substrate) divided by the total
radiated power density.

Table 1: Parameters of considered FWPBG structure

R, 1

n,. 2

", 145
t, [um] 0.50
L [um] 8.60
A [um] 0.43

1.4r

1.3 14 15 1.6 1.7 18

A, pm

Fig. 2 Transmittivity and radiation loss spectrum  for simulated
FWPBG

—@— o (I/um)
—+— transmittivity, T
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The computer program in FORTRAN 77 language has been
implemented on a 500 MHz PC; it performs all calculations to
completely characterise the structure in a few seconds (~5). An
analysis in correspondence of 100 operating wavelengths is com-
pleted in a few minutes (4-5).

Results: To validate our model we have compared our results with
those calculated in [1] by using an exact vectorial model and the
agreement is excellent, the maximum percentage relative difference
being of 0.01% in the B, calculation and 0.1% in the o calculation,
for both TE and TM modes. The analysis was performed success-
fully for a structure etched down to the substrate with the param-
eters as listed in Table 1.

The transmission and radiation loss spectrum is shown in
Fig. 2. A correspondence between the bandgap position (higher
values of attenuation constant, o) and the transmittivity drop can
be seen. Outside the bandgap, the transmittivity oscillates due to
reflection to input and output section discontinuities.

Comparisons of results obtained using the bidirectional mode
expansion and propagation (BEP) method show that the maxi-
mum percentage relative error on the gap calculation is < 0.01%.

The main advantage of the model is the absence of any « priori
assumption and approximation, the speed and stability of the con-
vergence, and the large amount of information and figures of
merit that can be determined in a few seconds. An accurate deter-
mination of the bandgap position is allowed and structures with
arbitrary profiles and finite length can be investigated. The real
behaviour of PBG devices as perfect reflectors can be successfully
predicted by our model which enables the designer to have a com-
plete view on the physical and geometrical device features, and to
draw up design rules for optimising of waveguide PBG device
design easily and quickly.
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Modes of Mobius resonator

J.M. Pond

The modes in a Mobius wire-loaded cavity resonator are
discussed. In addition to the higher order Mobius modes, which
occur at odd integer multiples of the fundamental mode resonant
frequency, a set of modes, which occur at approximately even
integer multiples of the fundamental M@bius resonant frequency,
are discussed. These modes arise from the presence of the cavity
wall and are related to even modes of a coupled line system.

Introduction: Dual-mode Mobius resonators which rely on a geo-
metrical deformation of a transmission line to obtain a four-fold
reduction in volume have been previously introduced [1, 2]. In the
mathematical language of topology, these resonators are related to
the study of non-orientable surfaces. Although traditionally
referred to as one-sided surfaces, non-orientable surfaces are those
for which the concept of left and right are globally nonsensical [3].

The Mobius strip is the prototypical non-orientable surface in
that all non-orientable surfaces contain a Mobius strip. The
Mobius strip possess the unique property that there is an apparent
periodic alternation between left and right as the centre circle of a
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Mobius strip is traversed. If a transmission line is projected onto a
non-orientable surfacc with phasing required to sustain the elec-
tromagnetic oscillation along the path length associated with
reversal of left and right, a resonant condition occurs with a vol-
ume reduction of a factor of four [1, 2].

A AT y B> B 180" twist

0 a1} e 0—+0 =

B Ivremepen |p,p  resonance
] 90 180

a

A . B> B 180" twist

e j Lt '

0 ta . o-o0 =

B ) T Pt A=A anti-resonance
0 180 360

b

A , e B— B 180’ twist

ok :\\ et T 0-0 =

B T “-ya |A—+A  resonance
0 270 540

c

A —r B> B 180" twist

ok B “ joso =

B A e e A-+A anti-resonance
0 360 720

d phase, deg

Fig. 1 Hlustration of conditions required for resonance of Mobius wire
resonator

Orthogonal modes satisly resonance condition when centre circle
length (O-O’) is odd integer multiple of A/2, but are anti-resonant
when centre circle length is even integer multiple of A/2

Discussion: A convenient way of visualising the modes in such a
resonator is to consider a twin conductor transmission line pro-
jected onto a Mobius strip. The conductor can be visualised as the
edge of thec Mobius strip and an clectric field flux linc can be con-
sidered as laying on the non-orientable surface. The M&bius strip
can be formed from a rectangle by twisting one edge of the rectan-
gle with respect to its opposite edge by 180° and joining thesc two
edges. This twisting of the transmission line geometry by 180°
results in a similar phase reversal of an electromagnetic field.

Fig. la illustrates the two fundamental orthogonal modes that
can exist in a Mgbius resonator. The electrical length of the trans-
mission line projected onto the non-orientable surface is a half
wavelength. Assuming that the centre circle (O-O) of the Mdbius
strip formed in Fig. la is geometrically a circle (the term circle has
a different meaning to topologists [3]), then the fundamental reso-
nance occurs at md, = A/2, where d, is the radius. Due to the twist
that exists in the transmission line, the resonator does not have a
resonant condition at twice the fundamental frequency. This is
illustrated in Fig. 1b, where it can be seen that an electrical length
of 360°, combined with 180° of deformation, results in an anti-res-
onant condition. Similarly, we can see {rom Figs. l¢ and o that
resonant conditions will exist for odd-integer multiples of the fun-
damental but not for even-integer multiples of the fundamental.
Specifically, resonance will exist when nd, = (2n + 1)A/2 (with n =
0,1,2,..).

b

Fig. 2 Mébius wire resonator and twin-loop wire resonator

Mean diameters of both resonators werc 1.94 cm
a Mobius resonator b Twin-loop resonator

Experiment: The twin-lead transmission line structures shown in
Fig. 2 were fabricated and measured to demonstrate and compare
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the resonant behaviour of a regular twin-lead transmission line
and a Mobius resonator. Both resonators were placed in a 2.54cm
diameter copper cavity (which, when empty, possessed a funda-
mental resonance at 9.04 GHz) which had two loop probes to
weakly couple to the wire resonator. The measured transmission
response of both resonators when weakly coupled is shown in
Fig. 3. As expected the fundamental resonance of the Mbius res-
onator is at approximately half the fundamental resonance of the
conventional twin lead (double loop) resonator. However, unlike
the modes predicted by nd, = 2n + DA/2 (withn =0, L, 2, ...), it
can be secn that resonances exist that ncarly correspond with
even-integer multiples of the fundamental frequency. These addi-
tional modes are not M&bius modes but, rather, result from plac-
ing the wire structure in a cavity.

0 T T T T

Syyl, dB

frequency, GHz

Fig. 3 Measurcd transmission response of both resonators when placed
in 2.54 cm diameter copper cavity

——— Mobius resonator - — — — lwin-loop resonator
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Fig. 4 Currents and electric fields for Mébius and generalised even
modes

o Mobius modes b Generalised modes

Unlike in isolation, when inserted in a conducting cavity, locally
(for a cross-section) there exists a coupled lined geometry with
respect to the cavity wall which is at ‘ground’ potential. Fig. 4
illustrates the general differences in the current and electric field
distribution of the two types of modes. The M&bius modes inter-
act only minimally with the cavity walls since the currents in the
two conductors are counter flowing. The other set of modes
involves nearly equal currents in both wires flowing in the same
direction and requires a counter flowing current in the cavity wall.
These modes will occur when ntd, = nA (with n = 1, 2, 3, ...), where
md,. is the mean circumference of the transmission line defining this
mode. This sct of modes, which can be considered to be a set of
cven modes of the associated non-uniform coupled transmission
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lines [4], does not exist cxcept when the wire structure is inserted
in a cavity. In the geometries measured ¢, = d,, and hence, the
gven modes appear at the approximately even integer multiples of
the frequency of the fundamental Mobius resonance.

0 T Y T T

1S,41, dB

4 6 8 10
frequency, GHz
aueney

Fig. 5 Comparison of resonances obtained by weakly coupling to
Mabius wire resonator in 2.54 cm diameter copper cavity and on foam
pedestal

[ 2

—--- - Mobius wire — — — — foam pedestal

This explanation was confirmed by mcasuring the response of
the Mobius wire resonator when placed on an electromagnetically
transparent foam pedestal. The Mobius wire resonator was illumi-
nated and the forward-scattered signal was measurcd. The orienta-
tion of the resonator was varied with respect to both the
illumination signal as well as the receiver to ensure that the lack of
a responsc at frequencies near the even integer multiples of the
dominant Mobius mode frequency was not caused by a fortuitous
geometry. A typical response is shown in Fig. 5, where, for com-
parison, the response measured in the cavity is repeated. Clearly,
the modes at the even-integer multiples of the lundamental
Mobius mode frequency do not exist without the presence of the
cavity walls to support the counter-flowing current.

Conclusions: The modes of a Mobius resonator have been dis-
cussed. The higher order Mébius modes are shown to exist only at
odd-integer multiples of the fundamental mode. When realised as
a wire-loaded cavity resonator it was shown that the additional
modes that occur at approximately even-integer multiples of the
fundamental mode are not Mobius modes, but rather are associ-
ated with generalised even modes where current flow in the cavity
wall is required for resonance. Suppression of the generalised even
modes will facilitate the design and fabrication of Mobius filters
with superior out-of-band rejection.
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Multilayer elliptic filter

R.W. Jackson and Hsiao-Chun Hsu

A compact conliguration for a four pole elliptic filter is described.
This filter stacks quarter wave resonators in a novel manner that
is particularly suitable for multilayer ceramic packaging. A design
procedure is discussed.  Simulations and measurements of a
prototype filter arc presented.

Introduction: Elliptic filters are often used in mobile communica-
tions transceivers because their transmission zeros can be used to
limit interfercnce to or from adjacent channels, e.g. in PCS appli-
cations. Since several such filters may be used in a single mobile
radio, the most useful filter realisations must be as small as possi-
ble while still retaining good low loss characteristics. Because of its
stacked nature, the filter we describe in this Letter is particularly
compact, being half the size of an unstacked version. Its construc-
tion is also compatible with common low cost planar ceramic fab-
rication processes.

In contrast to fully planar microstrip filters such as the micros-
trip square open loop filter [1], the stacked configuration described
herein allows more space for each resonator and therefore a higher
0. However, the stacked structure does not as yet include the
cross coupling effects that make [1] so interesting.

e} —0

Fig. 2 Elliptic filter cireuit topology

Fig. 1 illustrates the multilayer elliptic filter structure. Two lay-
ers of dielectric are shown sitting upon a conducting ground plane.
There arc four, quarter wavelength short circuit transmission line
resonators (SCTL). The purpose of these resonators is best
explained by referring to the classic elliptic filter circuit shown in
Fig. 2. The two SCTL resonators just above the ground plane in
Fig. | are the shunt resonators shown in Fig. 2. The bottom con-
ductor of the series SCTLs is located between the dielectric layers
and coincides with the top conductor of the shunt SCTLs. The top
conductors of the series SCTLs are on the upper surface of the top
dielectric layer. A transmission line on that surface connects one
shunt-series pair to the other. Via trenches at the ends of the reso-
nators we short circuit the top plate to the middle plate and the
middle plate to the ground planc. Feed lines are located on the top
surface of the lower dielectric layer and connect to the upper con-
ductor of the shunt SCTLs.

Design procedure: A mix of electromagnetic simulation and circuit
modelling is used in the design of this filter. Standard tables are
used to establish component values for the lumped element proto-
type in Fig. 2. The length of each physical resonator is initially set
to be one-quarter wavelength at the resonant frequency of the cor-
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